GravEn: Software for the simulation of gravitational wave detector network response
نویسندگان
چکیده
Physically motivated gravitational wave signals are needed in order to study the behavior and efficacy of different data analysis methods seeking their detection. GravEn, short for Gravitational-wave Engine, is a MATLAB r © software package that simulates the sampled response of a gravitational wave detector to incident gravitational waves. Incident waves can be specified in a data file or chosen from among a group of pre-programmed types commonly used for establishing the detection efficiency of analysis methods used for LIGO data analysis. Every aspect of a desired signal can be specified, such as start time of the simulation (including inter-sample start times), wave amplitude, source orientation to line-of-sight, location of the source on the sky, etc. Supported interferometric detectors include LIGO, GEO, VIRGO and TAMA. PACS numbers: 04.80.Nn, 95.55.Ym, 07.05.Tp
منابع مشابه
A new method based on fuzzy system and gravitational optimal detector for capacitor placement, considering nonlinear loads
This paper describes an advantageous method for using the capacitor banks in the distribution network, optimally. The aim is to determine the count, location and capacitor values in order to minimize the annual cost resulting from energy losses and capacitor bank’s installation cost. Besides, in the case of having nonlinear loads in the network, by installing capacitors in appropriate locations...
متن کاملGravitational-Wave Signal Simulation for LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has been constructed to directly measure the distortion of spacetime due to an impinging gravitational-wave (GW). LIGO’s biggest challenge is that the size of the signal is tremendously weak, and there are various kinds of noises that need to be suppressed to make the tiny signal visible. In order to assist in tackling this issue, a...
متن کاملSensitivity Analysis of a Wideband Backward-wave Directional Coupler Using Neural Network and Monte Carlo Method (RESEARCH NOTE)
In this paper sensitivity analysis of a wideband backward-wave directional coupler due to fabrication imperfections is done using Monte Carlo method. For using this method, a random stochastic process with Gaussian distribution by 0 average and 0.1 standard deviation is added to the different geometrical parameters of the coupler and the frequency response of the coupler is estimated. The appli...
متن کاملAccuracy of parameter estimation of gravitational waves with LISA
LISA is a space-borne, laser-interferometric gravitational-wave detector currently under study by the European Space Agency. We give a brief introduction about the main features of the detector, concentrating on its one-year orbital motion around the Sun. We compute how the amplitude as well as the phase of a gravitational wave are modulated due to this motion by transforming an arbitrary gravi...
متن کاملA Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves
Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006